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EFFECTIVE ELASTIC MODULI OF GRANULAR MEDIA 

A. D. Zaikin UDC 534.213 

The solution of problems concerning the deformation of heterogeneous media is often 
based on the hypothesis of effective homogeneity [I], which amounts to assuming that the 
heterogeneous medium can be replaced by a homogeneous continuum having certain effective 
parameters. The problem consists of determining the effective properties of the hetero- 
geneous medium through the properties of the phases and some of their geometric character- 
istics. Finding the effective elastic moduli of sandstone oil and gas resevoirs in general 
and the velocities of longitudinal and transverse waves in particular, determining the re- 
lationship between the velocities and the structure of the pore space on the one hand and 
the properties of the fluid on the other hand - these are very important problems for seismic 
prospecting. 

We will concern ourselves with the simpler situation of an empty (not containing fluid) 
consolidated granular skeleton. There are several approaches to solving this problem, but 
until recently the granular character of the skeleton has been accounted for only in solu- 
tions based on the Hertz problem concerning the deformation of two spheres at the point of 
contact under the influence of applied forces [2]. However, the presumption of point con- 
tact at the initial moment of loading does not conform to the condition of consolidation of 
rock and leads to a situation whereby elastic waves in such a model propagate only in the 
presence of external pressure. A number of other solutions [i] account only for the frac- 
tion of the volume corresponding to the pore space. In practice, an equation obtained from 
statistical analysis of a large number of laboratory measurements is widely used to relate 
the velocities of elastic waves with a certain characteristic of the structure (mainly 
porosity), as well as with mean grain size, permeability, etc. Thus, there is a need for 
new approaches to the calculation of the effective elastic moduli of granular media. 

The author of [3] proposed the use of the variational approach to calculate the stress 
state of an individual main and the effective elastic moduli of an empty granular skeleton. 
He investigated a longwave approximation, i.e., a situation in which the length of the elastic 
wave is much greater than the sizes of the grains. This makes it possible to change over to 
the static equations for an individual grain. A granular body is subjected to a hypothetical 
unilateral compression 

e11= e=, = e=1 = e13---- e~8 = O, e~3 = i. (i) 

It is assumed that the energy associated with the deformation of one grain is minimal with 
certain restrictions on the character of this deformation, i.e.: the grain as a whole does 
not undergo displacement or rotation, and the strain tensor at the center of the grain has 
the form (I). These requirements make it possible to completely determine the unknowns at 
the points of contact with the loading grain. However, the hypothesis on the character of 
the elastic strains of an individual grain needs to be more carefully substantiated. In any 
case, it should be consistent with the asymptotic solution for a continuum. 

Novosibirsk. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 
i, pp. 91-96, January-February, 1990. Original article submitted December 16, 1987; revision 
submitted August ii, 1988. 

0021-8944/90/3101-0085512.50 �9 1990 Plenum Publishing Corporation 85 



We will examine a grain of the volume V. Its surface S consists of areas of contact 
with adjacent grains having the total area 5S and the free surface S - AS. Let the loads 
fi, nontrivial only on AS, satisfy certain conditions which are linear with respect to fi: 

T ~ ~ = t~ (y) f~ (~) dS,  ( 2 )  
AS 

i.e., certain restrictions are placed on the character of deformation of the grain. We find 
the variation of the energy functional 

E = - ~ i e i j d V .  

Since eii ~ (I/2)(Ou]Oxi �9 Ou1/Ox~), and since the strains and stresses are connected by Hooke' 
law, we write 

6E = - -  ~u~U dV + ~x~ dV, 

where 

(7. a~uh {~um a~i ~ ] 

~2u i @2u h 

U~ = ~ a~x--~ + (7. + ~) Ox~Ox~" 

S i n c e  t h e  d i s p l a c e m e n t s  u i s a t i s f y  t h e  Lamg e q u a t i o n s ,  t h e  f i r s t  i n t e g r a l  i s  e q u a l  t o  z e r o .  
The s e c o n d  i n t e g r a l ,  in  a c c o r d a n c e  w i t h  t h e  d i v e r g e n c e  t h e o r e m ,  i s  t r a n s f o r m e d  i n t o  a s u r -  
f a c e  i n t e g r a l :  

~ = ~ F ~ a s  = ~ ~ (y) ~I~ (~) as.  (3)  

Given  c o n d i t i o n s  ( 2 ) ,  t h e  minimum o f  f u n c t i o n a l  (3 )  i s  o b t a i n e d  i f  u i ( Y ) = - - ~ t i h ( Y ) ,  w ~ A S  (7.h 
a r e  t h e  L a g r a n g e  c o n s t a n t s ) .  Thus ,  t h e  e n e r g y  m i n i m i z a t i o n  p r o b l e m  f o r m u l a t e d  in  [3] i s  r e -  
duced t o  an i n t e r n a l  p r o b l e m  o f  t h e  t h e o r y  o f  e l a s t i c i t y  w i t h  mixed  b o u n d a r y  c o n d i t i o n s  

u~(y) = --7.kt~h(y), y ~ AS,  (4) 
h ( y ) - 0 ,  y ~ S - - A S .  

We will change over to the case of a solid. In this case, AS § S. The form of the sur- 
face of the grain may be arbitrary. We choose a sphere of radius R, which allows us to ob- 
tain the result in analytical form. The displacements near the center of the sphere are 
determined by the first and third terms of the expansion of the surface loads in spherical 
functions [4]" 

Y1 + 2 (7m + 5--------~ V div ~- Y3 m + t div YI �9 

H e r e ,  Y~z(0, ~)  = (2n q- 1)/4~tR2 ~ f(0~ ~)P~(cos ?)dS; cos y = sin 0 x sin 0' cos (~- -~ ' )  -{- cos 0 cos 0', 

m : 2(~ ~ ~)/L. We find the strain tensor at the center of the sphere through the surface 
integral over the loads 

= 3 m - -  By~Snv) f~ e.,(O) A y(5yn6pi + 5yv6n, + 5~y.ypy~ (y) dS ( 6 ) 
(A = (i6~lx(7m + 5)R3/3) -~, B = (7m 2 + 21m + i0)/(m + i)) 

k 
along with the analytical form of the functions ti(Y) corresponding to coupling conditions 
(i). To solve t~_e equilibrium equation with boundary conditions (4) at AS = S and the ex- 
plicit form of t.~(y) determined from (6), we use the solution of the first internal problem 
for a sphere [4]. Having performed the necessary calculations, we finally obtain on the 
surface of the sphere displacements which do not conform to the hypothetical unilateral com- 
pression: 

u~(y) : (1 q-D(4--7m))y~6a~ + Dye(2 q- (7m - -  lO)y~/R 2) (7 )  

(D : 7m/(49 m~ -- t4m - -  20)). 

Thus, the grain can have a stress state with an energy lower than that present in unilateral 
compression but with the same form of the strain tensor at the center. As a result, conditions 
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(i) are not consistent with the asymptotic solution for a continuum. 

Considering the above approach to determination of the stress state of a grain, we 
will make use of the energy method in [i]. This method entails determination of the effec- 
tive elastic moduli through the equality of the strain energies stored by the heterogeneous 
and effective homogeneous media. Let a certain volume V of a granular body with a porosity f 
be subjected to cubic compression. For an effective homogeneous body with the elastic moduli 
K* and ~*, we have the mean stress tensor oij = P6ij and energy E = VPI/2K *. A stress ten- 
sor of this form is the result of averaging over the macrovolume of the granular body. Since 
the skeleton is empty, we integrate only over the grains. If V 0 is the volume of one grain, 

0 
then the volume contains N = V(I - f)V 0 grains. Let <oij> be the mean stress tensor of a 
typical grain. Then 

~ij = ~ f o~ I <~j> NVo. v J  =-V 

Thus, for the mean stress tensor of the grain 

o ~ P 6~j. 

We do not pretend that the derivation of this relation was rigorous. It can obviously be 
considered only an estimate of the mean stress tensor of the grain. 

Of all possible states of a grain with this form of mean stress tensor, we will choose 
the stress state with the minimum energy E 0. The coupling conditions are written very 
simply, since it is known [5] that 

= w ~ (wh + dS. (8) 

By virtue of the linearity of the Lam6 equations, the loads found on the contacts from the 
solution of the problem of elasticity theory with mixed boundary conditions (4) can be repre- 
sented in the form of a series in Lagrange constants. In this case, coupling conditions (8) 
reduce to a system of linear algebraic equations B~m=--<~. For convenience, the 

Lagrange constants and coupling conditions will be used with a double index. Considering 
that E = (i/2)fuifidS and using boundary conditions (4), we obtain 

E~ 2 t~ (y)/~ (Y) dS = - -  ~ <~o>/2, 

or 
0 ' n m  --I 0 

e0 = 

The energy of the entire volume V is NE 0. Thus, we finally obtain 

K* = V0 (1 - - / ) / (BII )  

To d e t e r m i n e  t h e  second  e l a s t i c  modulus ,  we p r o c e e d  as b e f o r e  and p o s e  t h e  p rob lem of  a 
h y p o t h e t i c a l  pu re  s h e a r .  Then o i j  = P6 i z53 ,  E = Vp2/2~ *. The e f f e c t i v e  s h e a r  modulus 

= v0 (t 
while the velocities of the longitudinal and transverse waves 

�9 I /  V~ = r ~-~----~ , Vs = p ( l - - / )  

(p i s  t h e  d e n s i t y  o f  t h e  m a t e r i a l  o f  t h e  g r a i n ) .  I n  t e rms  o f  t h e  method used  t o  c o n s t r u c t  
i t ,  t h e  m a t r i x  B depends  only on t h e  g e o m e t r y  o f  t h e  g r a i n  and i t s  e l a s t i c  p r o p e r t i e s .  Here ,  
t h e  e l a s t i c  c o n s t a n t s  o f  t h e  g r a i n  appea r  in  t h e  e x p r e s s i o n s  f o r  ~*/V, K*/K, V~/Vp, V~/V S 
o n l y  in  t h e  form o f  t h e  P o i s s o n ' s  r a t i o .  

To s o l v e  t h e  p rob lem w i t h  mixed b o u n d a r y  c o n d i t i o n s  (4)  f o r  a g r a i n  w i t h  a known d i s t r i -  
b u t i o n  o f  c o n t a c t s ,  we u se  t h e  method of  i n t e g r a l  bounda ry  e q u a t i o n s  [ 6 ] .  We r e p r e s e n t  t h e  
d i s p l a c e m e n t  v e c t o r  in  t h e  form o f  t h e  p o t e n t i a l  o f  a s i m p l e  l a y e r  

.~(x) = ~r~.j(x, V)+j(v)dS (9) 

[~j(Y) i s  t h e  d e n s i t y  o f  t h e  p o t e n t i a l ,  rij(x, y) i s  a K e l v i n - S o m i l y a n  m a t r i x ] .  The p o t e n t i a l  
d e n s i t y  i s  c o n n e c t e d  w i t h  t h e  s u r f a c e  l o a d s  by a sy s t em of  i n t e g r a l  bounda ry  e q u a t i o n s  
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r 1 ~(Y)+ ~ ij(Y, y')~j(y~)dS /~(y), ( i0) 
which can be solved by the method of successive approximations. To realize this numerically, 
we subdivide the surface of the grain into elementary areas dS k, assuming that all of the 
unknowns are constant and are referred to its center. We will seek the load in the form of a 
series with constant coefficients aT: 

M 

where M is the number of elementary areas at the contacts; ~m(y) is the characteristic func- 
tion of an area; meanwhile, ~m(y) = 0 if y~dSm~ and ~m(y) = i if y~dS m. Using (9) and 

(I0), we represent the displacements on the contacts in the form of a series with the coef- 
ficients a~. Mixed boundary conditions (3) reduce to a 3M • 3M system of linear algebraic 
equations relative to the coefficients a T. This system is solved by Gauss' elimination meth- 
od. 

The effective properties of the granular body cannot be determined without a suffi- 
ciently detailed description of its structure. The models used for these purposes should 
reflect the structural features of the pore space and matrix that are important for the prop- 
erties being studied. The model which is best suited for these purposes is the model of in- 
tersecting spheres [7]. Use of this model makes it possible to change over from a system of 
contacts distributed on the grain to integral parameters of the structure. 

We will examine a system of spheres of radius R 0 which are distributed randomly in space 
and are in contact with one another at a point (N is the mean number of contacts per sphere 
and f0 is the porosity of the system). A whole range of rather similar relations f0(N) has 
been obtained by both theoretical and empirical means. We will use the following procedure 
[8]. Let there be regular packings of spheres of identical radius that differ in porosity and 
the number of contacts: face-centered cubic f0 = 0.2595, N = 12; body-centered cubic f0 = 
0.3198, N = 8; cubic f0 = 0.4764, N = 6; tetrahedral f0 = 0.6599, N = 4. We can depart from 
a realistic geometric representation and assume that the static parameters of random pack- 
ings change continuously in accordance with an interpolation curve drawn through the points 
belonging to the regular packings. We thus find the function f(N) in the range from 4 to 
12. 

Having fixed the centers of the spheres distributed randomly in space, we increase their 
radius from R 0 to R = /R~ + r 2 (r is the radius of the contact spot). The porosity of such a 
system of intersecting spheres 

I=2" !-Io h _ N ( ~ _ V ~ ) ( 1 + 6 ~ _ g ~ ) ) :  ' ( i . ~)~J2 ~- ~ . 

while the specific surface (the surface of the pore space per unit volume) 

Having determined the mean grain size <D> as the diameter of a sphere with the same ratio 
of volume to surface, we introduce a dimensionless parameter in the form of the product of 
the specific surface and the mean grain size N = Sv<D>. The geometry of such a model is com- 
pletely determined by two dimensionless parameters - such as f and N - and by the character- 
istic linear dimension <D>. Since the wavelength ~ ~ <D>, it is natural to suggest that the 
velocities of the elastic waves in such media will be a function of two parameters of the 
structure of the pore space. 

We will use the model of intersecting spheres to calculate the effective elastic moduli. 
Having assigned the distribution of contacts in a grain in accordance with one of the regular 
packings described above, we change the radius of the contact spot and, thus, the porosity 
of the packing. Here solving the problem with mixed boundary conditions (4), we obtain the 
dependence of the velocities of the longitudinal and transverse waves on porosity for each 
packing. Figures I and 2 show such relations. Here, the Poisson's ratio of the grain was 
assumed to be equal to 0.25. The numbers next to the curves denote the type of packing. Of 
course, the elastic energy depends on the distribution of the contacts with respect to direc- 
tion. Thus, it is more reliable to take the average over an ensemble of grains with the same 
number of contacts and different distributions with respect to the direction. Moreover, a 
certain distribution of grains with respect to the number of contacts is realized in random 
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packings, and it is also necessary to take the average for this distribution. However, it is 
unlikely that such a procedure will significantly distort the character of the resulting re- 
lations, since the main factors affecting the energy of the grains are the number of con- 
tacts and their sizes. Thus, we will assume that the curves that were obtained are also 
valid for random packings with a mean number of contacts per grain (N = 4, 6, 8, 12). The 
velocities for intermediate values of N - including fractional values - can be found by in- 
terpolation. It is more expedient to change over to the parameters f and q. Using the method 
of multiple regression, we approximate the dependences of u and u S on f and q by the 
equations 

Vv* = Vv(i --0.712f--0:0776~), 

Vs* = Vs( l ' 0 .660 / - -  0:0617~). 

The mean e r r o r  of the  p r e d i c t i o n  wi th  such an approximat ion  of the  curves in F igs .  1 and 2 i s  
5.6% fo r  t he  l o n g i t u d i n a l  waves and 6.2% fo r  the  t r a n s v e r s e  waves. 

Thus, the  fo l l owing  conc lus ions  can be made. The v e l o c i t i e s  of  l o n g i t u d i n a l  and t r a n s -  
ve r se  waves in c o n s o l i d a t e d  g r a n u l a r  media depend on a t  l e a s t  two s t r u c t u r e  parameters  of 
the  pore space.  Examples of  such parameters  a re  p o r o s i t y  and the  product  of the  s p e c i f i c  
s u r f a c e  and mean g r a i n  s i z e .  Meanwhile, an i n c r e a s e  in the  l a t t e r  leads  to  a decrease  in the  
wave velocities. The velocities of the longitudinal waves are more sensitive to changes in 
the structure parameters compared to the transverse waves. This leads to a decrease in the 
effective Poisson's ratio. The effective elastic parameters depend only on the Poisson's 
ratio of the materialof the matrix. 
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